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LETTER TO THE EDITOR

About the supersymmetric extension of the symplectic
Faddeev–Jackiw quantization formalism

A Foussats† and O S Zandron†
Facultad de Ciencias Exactas Ingenierı́a y Agrimensura de la UNR, Av. Pellegrini 250,
2000 Rosario, Argentina

Received 14 March 1997, in final form 28 April 1997

Abstract. The key equations of the supersymmetric extension of the symplectic Faddeev–
Jackiw quantization formalism are written in an alternative way. In this method the crucial
problem is to compute the inverse of the symplectic supermatrix. We show how it can be easily
given once the configuration space is defined.

As is well known, an alternative procedure concerning the quantization of systems described
by first-order actions was given by Faddeev and Jackiw (FJ) [1]. In some cases the
symplectic method is more economical than the usual Dirac formalism [2] for constrained
Hamiltonian systems.

The FJ Lagrangian method is particularly useful when used in gauge models containing
many dynamical variables involving several constraint equations.

The procedure developed by FJ is available for dynamical systems described by first-
order Lagrange functions. This is not a crucial restriction, because any dynamical system
can be written in first-order form, enlarging the configuration space by introducing suitable
auxiliary fields.

Essentially, the FJ formalism where differential geometric techniques are used, shows
how, by means of an unusual type of ‘generalized brackets’ on configuration space, a given
system can be quantized along the ordinary prescriptions of the canonical quantization.
In this picture, all the canonical information of a dynamical system is contained in the
fundamental symplectic 2-form. The main feature of the symplectic formalism is that the
classification of constrained or unconstrained systems is related to the singular or non-
singular behaviour of the fundamental symplectic 2-form [3–5]. In contrast to the Dirac
language, the classification of constraints in primary, secondary and so on, or in the first
class and second class has no meaning. In the FJ symplectic treatment there are only
constraints associated with gauge symmetries. When the FJ method is applied to gauge
field theories in which true first-class constraint exist, the algorithm is unable to produce an
invertible symplectic matrix. That is, the generalized brackets or commutators cannot be
computed. In such a case a way of solving the situation is to break the gauge symmetries by
adding gauge fixing terms in the action. Alternatively, one can solve the gauge constraints
and rediagonalize the canonical 1-form.
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A useful point of view about the FJ formalism was recently given in [6]. In this paper
it was shown how the FJ construction in non-Abelian systems leads to a singular symplectic
matrix. The zero modes associated with the singular symplectic matrix generate a symmetry
on the constraint surface, and so define the basic geometric structure of the model. Moreover,
as can be seen clearly, the zero modes and the generators of gauge symmetries are closely
related, leading to the correct transformation properties for the gauge fields.

On the other hand, an extension of the FJ formalism to include Grassmann dynamical
variables can be found in [7]. The supersymmetric version developed in [7] has not often
been used in supersymmetric systems. As we have shown in [8, 9], the algorithm turns out
to be very powerful when it is applied to different supergravity models.

The purpose of the present letter is to write the key equations of the formalism in
an alternative way that allows us to write general equations for the generalized graded
commutators. Then, when particular models are considered, these equations can be easily
computed.

As mentioned above, the FJ symplectic quantization method is based on an action
only containing first-order time derivatives. The most general first-order action contains a
Lagrangian density specified in terms of two arbitrary functionalsKA(µ

A) andV (µ) which
is given by

L(µA, µ̇
A) = µ̇AKA(µA)− V (µ). (1)

The functionals,KA(µA) are the components of the canonical 1-formK(µ) =
KA(µ) dµA and the functionalV (µ) is the symplectic potential. Both are of even
Grassmann parity and, therefore,KA(µ) has Grassmann parity|A|, where the general
compound indexA runs over the different ranges of the complete set of variables. The
set of dynamical field variables{µA} is given by the original set of fields plus a set of
auxiliary fields necessary to bring the system into its first order form (1); consequently this
set defines the extended configuration space.

The Euler–Lagrange equations of motion obtained from (1) are∑
B

(−1)|B|MABµ̇
B − ∂V

∂µA
= 0. (2)

The elements of the simplectic supermatrixMAB(µ) are the components of the
symplectic 2-formM(µ) = dK(µ). The exterior derivative of the canonical 1-formK(µ)
is written as the generalized curl constructed with functional derivatives and the components
are, therefore, given by

MAB(x, y) = δKB(y)

δµA(x)
− (−1)|A||B|

δKA(x)

δµB(y)
. (3)

By definition, the Grassmann parity of the supermatrixMAB is (|A| + |B|) and the
symmetry property is

MAB = −(−1)|A||B|MBA. (4)

When the simplectic supermatrixMAB is non-singular, it defines the symplectic two-
form characterizing the dynamical system described by (1). In such a case there is a unique
quantity(MAB)−1 with the property∫

dz MAB(x, z)(M
BC)−1(z, y)= δCAδ(x, y) (5)∫

dz (MAB)−1(x, z)MBC(z, y)= δACδ(x, y). (6)
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From the equations of motion (2) we have

µ̇A = (−1)|A|(MAB)−1 ∂V

∂µB
. (7)

As the symplectic potential is just the Hamiltonian of the system, the equation (7) is
written as

µ̇A = [µA,V } = [µA,µB} ∂V
∂µB

(8)

where

[µA(x), µB(y)} = (−1)|A|(MAB)−1(x, y) (9)

are the generalized graded brackets defined in the supersymmetric extension of the FJ
symplectic formalism.

Clearly from (4)–(6), the Grassmann parity of the supermatrix(MAB)−1 is (|A| + |B|)
and so the symmetry property is given by

(MAB)−1 = −(−1)|A|+|B|+|A||B|(MBA)−1. (10)

It is easy to show that the elements(MAB)−1 of the inverse of the symplectic supermatrix
MAB correspond to the graded Dirac brackets of the theory. Transition to quantum theory
is realized as usual by replacing classical fields by quantum field operators acting on some
Hilbert space. Therefore, the predictions of both the FJ and Dirac methods are equivalent.

When the supermatrixMAB is singular, the constraints appear as algebraic relations and
they are necessary to maintain the consistency of the field equations of motion. In such a
case, there existm (m < n) left (or right) zero modesv(α) (α = 1, . . . , m, A = 1, . . . , n)
of the supermatrixMAB , where eachv(α) is a column vector withn + m entriesvA(α). So
the zero modes verify the following equation:∑

A

vA(α)MAB = 0. (11)

From the equations of motion (2) we see that the quantities�(α) (of Grassmann parity
|α|), which are the true constraints in the FJ symplectic formalism, are given by

�(α) =
∫

dx vi(α)(x, t)
δ

δϕi(x, t)

∫
dy V (y, t) = 0. (12)

Consequently, after a given iterated step (for instance the first step), the Lagrangian
density can be written in the form

L(1) = ϕ̇iai(ϕ)+ ξ̇ α�α − V (1) (13)

where the partitionµA = (ϕi, ξα) andKA = (ai, �α) has been made. So, the compound
indicesA,B run over the setA = (i, α) andB = (j, β).

In these conditions, the simplectic supermatrix in compact notation is written as

MAB(x, y) =
(

M̄ij
δ�β(y)

δϕi (x)

−(−1)|α||j |
(
δ�α(x)

δϕj (y)

)
0

)
. (14)

In equation (13) we have assumed thatϕi(x) represents any field belonging to the
original symplectic set. Therefore, the square sub-supermatrixM̄ij of the supermatrix (14),
constructed from the original symplectic set of field variables, is non-singular. The compact
notationδ�α/δϕj represents a rectangular supermatrix.

The symplectic algorithm must be repeated until all the non-orthogonal zero modes have
been eliminated.



L516 Letter to the Editor

In each iterative procedure the configuration space is enlarged and the symplectic
supermatrix is modified. When no new constraints are obtained the iterative procedure
is finished.

As was commented above, if the matrix remains even singular, as in gauge theories,
gauge fixing terms breaking the gauge symmetries can be added to the Lagrangian, and the
graded commutators are computed in such particular gauge.

We assume that the inverse of the simplectic supermatrixMAB can be written as

(MAB)−1(x, y) =
(
Ajk(x, y) Bjρ(x, y)

Cβk(x, y) Gβρ(x, y)

)
. (15)

Using expressions (14) and (15) in equations (5) and (6), after some algebra the equations
we obtain are

Bjρ(x, y) = −(−1)|j |+|ρ|+|j ||ρ|Cρj (y, x) = −
∫

dz dw(M̄jk)−1(x,w)
δ�β(z)

δϕk(w)
Gβρ(z, y)

(16)

Aij (x, y) = (M̄ij )−1(x, y)− (−1)|k|+|β|+|k||β|
∫

dz dw

(∫
du (M̄ik)−1(x, u)

δ�β(z)

δϕk(u)

)
×
(∫

dv (M̄il)−1(z, v)
δ�α(w)

δϕl(v)

)
Gαβ(w, y) (17)∫

dz �αβ(x, z)G
βρ(z, y) = δραδ(x − y) (18)

where

�αβ(x, z) = (−1)|α||j |
∫

dy dv
δ�α(x)

δϕj (y)
(M̄ji)−1(y, v)

δ�β(z)

δϕi(v)
. (19)

Finally, from equations (9) and (17), the graded brackets can be computed and they are
written as follows:

[ϕi(x), ϕj (y)} = (−1)|i|(M̄ij )−1(x, y)

−(−1)|i|+|j |+|β|+|j ||β|
∫

dz dw

(∫
du (M̄ik)−1(x, u)

δ�β(z)

δϕk(u)

)
×
(∫

dv (M̄jl)−1(z, v)
δ�α(w)

δϕl(v)

)
Gαβ(w, y). (20)

From equation (18) we see that the supermatrixGαβ(x, y) is none other than the inverse
of the supermatrix defined above, whose matrix elements are�αβ(x, y). According to
equation (19), this supermatrix is constructed by using the set of constraints arising from
the symplectic formalism, and involving the inverse of the non-singular supermatrixM̄ij .
This way of writing the equations clearly shows how all the fundamental quantities remain
determined only by the inverse of the non-singular submatrixM̄ij and the square supermatrix
Gαβ(x, y). The form of M̄ij is, in general, very simple once a suitable choice of the
simplectic variables in (13) has been done. So, in the explicit evaluation of any graded
bracket the key supermatrix isGαβ(x, y). When such a matrix exists, equation (20) gives
the generalized graded brackets among every pair of fields of the complete set.

Of course, the supermatrix whose matrix elements are given in (19) is different from that
constructed by using the set of constraints provided by the Dirac formalism. Moreover, as
in the FJ algorithm there is, in general, a minor number of constraints, so the correspondent
supermatrix is of lower dimension and the algebraic manipulations are shortened.



Letter to the Editor L517

Now, when the supermatrixGαβ(x, y) does not exist the algorithm must be continued.
The eigenvectors correspondent to the zero modes of the supermatrix (14) are computed
from the general expression

v(x) = (vi(x), vβ(x)) =
(∫

dz dy(−1)|α||j |vα(z)
δ�α(z)

δϕj (y)
M̄−1
ji (y, x), vβ(x)

)
(21)

where the componentsvα verify∫
dz vα(z)�αβ(z, x) = 0. (22)

Consequently, from the homogeneous linear equation system (22), the independent zero
modesvα can be computed.

The expressions obtained above arising from the supersymmetric extension of the
symplectic FJ formalism are being checked in the supersymmetric nonlinear sigma model
including the supersymmetric Hopf term. This is an example of a constrained system
that in the Dirac picture contains first- and second-class constraints. As is well known,
the quantization of this model following the Dirac prescription is very hard. Some useful
conclusions will be given in a further paper by confronting both approaches.
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